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NOTE ON FINITE-DIFFERENCE APPROXIMATIONS FOR THE VISCOUS GENERATION 
OF VORTICITY AT A BOUNDARY 

R. C . BEARDSLEY 
Department of Meteorology, Massachusetts Institute of Technology, Cambridge, Mass. 

ABSTRACT 

The viscous decay of a fluid in solid body rotation in a circular two-dimensional container is studied using a 
vorticity finitedifference scheme. A comparison is made with the well-known analytic solution to determine the ac- 
curacy of several finitedifference expressions for the wall vorticity. The most accurate results are obtained with a 
first-order scheme that conserves the net integrated vorticity. 

I .  INTRODUCTION 

Consider axisymmetric two-dimensional motion in a 
circle of unit radius. The fluid is in an initial state of 
solid body rotation; the azimuthal velocity w(r, t=O)=r 
for (r<l). The tangential velocity must always vanish 
on the circular boundary, so c(1, t ) = O  for all time. 

The mathematical problem of describing the viscous 
decay of this initial state has a simple analytic solution 
that allows the accuracy of any numerical integration 
scheme to be checked directly. Since the ensuing decay 
is due entirely to the retarding torque generatd at  the 
boundary, this problem is well suited to test different 
finite-difference expressions for the torque or vorticity 
generated at the wall. 

There are other physical systems, of course, that possess 
analytic solutions; these could be used for such a com- 
parison study. Laminar flow along a pipe or linearized 
Ekman-layer flow are particularly good examples; the 
existence of a nontrivial steady-state solution would 
eliminate the complication of time-differencing errors. 
We chose the present system, however, because it also 
models in the simplest nontrivial way “spin up,” a class 
of physical problems currently being studied in geophysi- 
cal fluid dynamics. In this initial value problem, the 
angular velocity of a rapidly rotating closed container is 
suddenly changed by a slight amount. The enclosed 
fluid, initially conserving its angular momentum, takes 
on an instantaneous velocity field that decays with in- 
creasing time but always satisfies the no-slip condition 
on the container boundary. A homogeneous fluid adjusts 
to the new angular velocity through vortex stretching 
by Ekman layers. For a heavily stratified fluid, the prin- 
cipal adjustment process is the horizontal viscous diffu- 
sion of vorticity. The simple system outlined here crudely 
models this latter case, so the study tests the general 
applicability of such finite difference schemes to this 
particular type of initial value problem. Since all calcu- 
lations will exhibit the same time-differencing errors, a 
comparison of results for different wall-torque expressions 
will test their accuracy. 

Our problem may be formulated directly in terms of the 
azimuthal velocity v or in terms of the vertical component 
of vorticity { = (l/r)(rv),. We chose the latter approach 

since (1) the vorticity stream-function formulation is 
widely used in two-dimensional studies of nondivergent 
flow and (2) it allows us to evaluate directly the finite- 
-difference expression for the wall torque ileveloped ljy 
Bryan (1963) and Pearson (1965). Since by Eelvin’s 
circulation theorem the net vorticity for the continuous 
system is always zero, a third expression for the viscously 
generated wall torque is developed on the constraint 
that net vorticity be conserved. 

9. FORMULATION OF THE PROBLEM 

The viscous decay of two-dimensional circular motion is 
governed by the diffusion of vorticity 

{t=vV2{ (1) 

where u is the kinematic viscosity and the vorticity { and 
azimuthal velocity v are defined in terms of a stream 
function + by 

T=VV (2) 
and 

v=!b,. (3) 

At t=O,  the fluid is in solid body rotation except at the 
wall (T= 1) where the azimuthal velocity must always 
vanish to satisfy the no-slip condition. 

The analytic expressions for { and + are given in Bessel 
function series (Batchelor 1967) by 

and 

where An is the nth zero of the J1 Bessel function. 

3. CONSERVATION OF NET VORTICITY 

The net vorticity when integrated over an area A 
inside a contour C is by Stokes’s theorem the circulation 
of that contour: 

n n 
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If the contour Ccoincides with a stationary fluid boundary 
where the tangential velocity is required to vanish, 
rads is identically zero everywhere on the contour. Thus, 
if the entire fluid boundary is stationary, application of the 
no-slip condition on the boundary imposes on the vorticity 
field the kinematic constraint that the integrated or net 
vorticity must be zero. 

4. DEVELOPMENT 
OF THE FINITE-DIFFERENCE SCHEME 

Let Ar and At be increments of r and t where Ar=l/J, 
J being the number of radial grid points. The grid net is 
then defined by 

and 
r,=jAr, j = O ,  1, . . ., J 

t,=nAt, n=O, 1, 2, . . . . 
The finite-difference analog to eq (1) utilizes a fonvard- 
difference operator for the time derivative and a center- 
difference scheme for the Laplacian: 

(5)  

The continuous one-dimensional Laplacian operator may 
be integrated over a small annular shaped area to give 
the approximation 

r2 
(v2j)rdr=2n{ (Bfa T ) , ~ - ( V ~  4 T l l  

=d%- r;")[v2.f(r= (rl +4/2)1.  

Choosing rl=Ar[j-  (1/2)] and r2=Ar[j+ (1/2)] (except a t  
the origin where rl=O) yields for the finite-difference 
Laplacian (V) 

I 

1 A, j= 1 f - 4  

2.7 

Equation (5) may be integrated systematically in time 
at  all interior points (j<J) provided the vorticity gener- 
ated at  the wall is known for each time step. Let us con- 
sider the computational sequence of the integration cycle 
to  clarify the role of the wall vorticity in the vorticity- 
stream function approach. 

If we assume that the entire vorticity distribution is 
known a t  the nth time step, eq (5 )  yields the new vor- 
ticity field at  all interior points (j<J). The one- 
dimensional Poisson problem for #"+', namely that of 
finding a stream function + such that 

(V2$"+1)j=~y+1, j<J (7) 

subject to #==O, is next solved using one of several 
techniques (relaxation, Gaussian elimination, etc.) . Then 
an expression of the form 

i";"=F(+?+'> (8) 

is used to obtain an estimate of the wall vorticity. This 
completes the entire vorticity determination for the 
.(n+ 1) th  time step, and the cycle can be initiated again. 

The function F is usually determined by a Taylor series 
expansion of JI a t  the boundary where the no-slip con- 
dition requires that the normal derivative of + vanish. 
Two such expressions, of first- and second-order accuracy 
in Ar, respectively, were introduced by Bryan (1963) and 
Pearson (1965) : 

(Bryan) (9) 
2JIJ-l 

i J = F '  

and 
8#J-l- &J-2, (Pearson). T J =  2Ar2 

As previously discussed, the no-slip condition applied on 
an entire stationary fluid boundary requires the net vorti- 
city to be zero. A second order finite-difference version of 
this constraint (4) is 

J 
S A  {*dA= j=o {jAAj=Q (la) 

where 
7 r A r 2 ,  - 

4 j = O ,  

each elemental area (excluding the origin and boundary 
wall) being an annular shaped region of radial thickness 
Ar centered on a mean radius jAr .  This approximation (11) 
is also consistent with the choice of area increments used 
in the derivation of the finite-diff erence Laplacian P. 

For determining if a finite-difference scheme is conserva- 
tive, that is, satisfies eq (ll),  we perform a summation 
with the vorticity given by eq (7) at the interior points 
(j<J) and by the expression (8) relating the wall vorticity 
to the local values of #. The scheme is then conservative 
if the sum equals zero. While neither Bryan's nor Pearson's 
expressions satisfy this constraint, a form that does con- 
serve net vorticity is easily found: 

(conservative). (12) 

It should be noted that Bryan's expression coupled with 
the usual center-difference form of the divergence operator 
for a Cartesian grid with equal increments does satisfy the 
Cartesian version of eq (1 1) .  
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Computations were made using eq (5) and the three 
wall-vorticity expressions (9), (lo), and (12) for 20- and 
@point radial grids. While the prediction equation is 
linear with nonconstant coefficients, the von Neumann 
stability criterion is 

vAt 1 (&-.e-. 
Ar2 -4 

The Gaussian elimination procedure (Richtmeyer and 
Morton 1967) was used to  obtain an exact solution of eq 

The initial fields used to start the calculations for all 

20) 

I 

I 6 - 

I 

I 

(7) for the stream function. 08 - 

schemes were 
$; ( t = O ) = 2 ( ~ - 1 ) ~  1 j2 j<J, 

j < J ,  
and 

2(2J-1)2 s"- - '- 45-1 

The wall value 3; was computed using the conservative form 
(12)' so that the initial field satisfied the finite-difference 
form of the integral constraint (11). We felt this procedure 
particularly relevant since the viscous sidewall boundary O' O3 O5 O 7  O9 ' I  l 3  l 5  21  23 

This problem of adequate boundary-layer resolution is 
confined to the initial few tirne steps since the boundary 
layer thickens quickly with time. 

"t - layer is initially much thinner than the grid spacing AT. r: 

FIGURE l.-Analytic solution for vorticity 
at selected radii. 

and stream function 1 ~ .  

5. COMPARISON OF ANALYTIC 
AND NUMERICAL SOLUTIONS 

Numerical calculations were performed for 20- and 40- 
point grids using two stability factors, G=2/9 and 1/9. 
The numerical vorticity and stream function fields were 
compared with the analytic solutions at  five different 
radii (T=O, 0.25, 0.50, 0.75, 1.0) to determine the overall 
accuracy of the various numerical schemes. Since both 
f and J. decay to zero with time and the differences 
between solutions are relatively small, the comparisons 
between numerical and analytic use a fractional deviation 
of the general form 

This expression shows the instantaneous difference be- 
tween the two solutions a t  the same point in space nor- 
malized by the value of the analytic field a t  that time. 
The analytic solutions for ( and J. at the comparison radii 
are shown for reference in figure 1. In  the figures that 
follow, the time coordinate is measured in units of non- 
dimensional time while the letters B, P, and C represent 
Bryan's first-order, Pearson's second-order, and the con- 
servative expressions, respectively. The values in paren- 
theses following the letters indicate the number of grid 
points J used in that particular calculation. 

I 
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FIQURE 2.-Fractional deviation of vorticity at the center of the 
circle versus time for G=2/9. 

We will discuss first and in detail the results for the 
larger stability factor 6=2/9. The computed vorticity 
fields show at all comparison radii that an increase in 
the spatial resolution for a constant stability factor 
reduces the magnitude of the fractional error. Since the 
analytic and numerical solutions for a t  the center are 
equal a t  t=O+, the fractional error Dp in figure 2 is initially 
0 for all schemes. Then after a short initial period of 
vorticity overestimation, primarily for the J=20 case, all  
numerical schemes underestimate at  the center. The 
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FIGUIW 3.-Fractional deviation of v0Fticit.y generated at the 
boundary versus time for G=2/9. 
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FIQURE 4.-Fractional deviation of stream function at the center 
of the circle versus time for G=2/9. 

behavior of the numerical solutions at  the other interior 
points is similar, with initial overestimation for both 
J=20 and 40 cases occurring at  r=0.5 and 0.75. While 
the amount of this initial overestimation increases slightly 
with increasing radius, the degree of underestimation for 
larger time (shown in fig. 2) is approximately constant 
with increasing radius, the conservative scheme showing 
the mihimum deviation. 

Part of the overestimation and underestimation of the 
vorticity field with time is caused by time-differencing 
errors. The fractional truncation error associated with 
the forward-difference approximation for the time deriva- 
tive is 0 ( C t t A t / t t ) .  We see from figure 1 that while for 
t>O and r50 .5 ,  C t r  changes sign from negative to positive 
with increasing time, so that an initial period of over- 
estimation is expected. 

While this transient behavior is observed at  all interior 
points, figure 3 shows that the three stream-function 
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FIGURE 5.-Fractional deviation of vemus time for G=2/9. 

expressions for the retarding torque generated at  the wall 
always underestimate the wall vorticity. Although the 
conservative scheme yields the most accurate prediction, 
all schemes give reasonably good results. All curves in 
figure 3 have an initial ordinate of 100 at  t=O+since the 
instantaneous analytic wall torque is 00 while all numer- 
ical solutions remain finite a t  t=O+.  This large starting 
error, due to the initially poor resolution of the growing 
viscous boundary layer, decreases as the resolution im- 
proves with time. This result suggests that, in other 
transient problems (especially the spin-up problem), the 
the initial lack of boundary-layer resolution should not 
cause appreciable error in either the boundary-layer 
phenomena or the interior flow with increasing t h e .  

The stream function found directly from the predicted 
vorticity field also shows underestimation and over- 
estimation at  the interior comparison radii. The stream 
function deviation at  the center shown in figure 4 is 
characteristic of the error patterns exhibited at  other 
radii. Both the Bryan and conservative schemes tend to 
cause initial overestimation while the second-order 
schemes of Pearson always Underestimate +. All 
schemes show an increased accuracy as the spatial resolu- 
tion is improved while the conservative scheme appears 
better only for larger time. 
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FIQURE S.-Fractional deviation of boundary vorticity versus time 
for G= 1/9. 

used to start all numerical integrations, for reasons 

procedure, a calculation was repeated for the 20-point 
grid using a modifled initial vorticity field in which the 

-5- -. 6 0 01 0 3  05  07  09 I I  13 15 17 19 21 discussed in the previous section. As a check on this 
- v t  
r,P 

value of 7 at the boundary was computed from $,, using 
Pearson's expression (10). The results, shown in figures 
2, 3, and 4 for T = O  and 1.0 with the label P*, indicate 

FIGURE 6.-Fractional deviation of kinetic energy (KE) versus time 
for G=2/9. 

This examination of vorticity and stream-function 
fields indicates that both Bryan's first-order and the 
conservative schemes are slightly more accurate than 
Pearson's higher order scheme. It should be remembered 
that the conservative expression (12) was used to compute 
the boundary value for the initial vorticity distribution 

significantly larger errors than those obtained with the 
original field. 

The numerical schemes being tested differ only in 
boundary conditions on the vorticity field a t  the wall 
where the entire retarding torque is generated. Integral 
properties of the flow like the kinetic energy and 
mean square vorticity were computed for the numerical 
solutions using the summation approximation given in 
eq (11) for the area integral. All three numerical schemes 
underestimate the mean square vorticity shown in figure 
5 while the kinetic energy shown in figure 6 exhibits some 
intial overestimation. Since the kinetic energy decays 
more rapidly to  zero with time, round-off errors become 
significant in figure 6 for vt/r; 2 0.15. 

The numerical results for the smaller stability factor 
(G=1/9) show several differences from those of the 
larger stability factor. An increase in the spatial resolution 
decreases the magnitude of the fractional errors of both 
{ and $ fields, but the numerical schemes now overestimate 
{ near the center (see fig. 7) only for large time. This 
general trend is also illustrated in the wall vorticity 
results shown in figure 8. The fractional errors in the 
integrated vorticity-squared and kinetic energy results 
are shown in figures 9 and 10 for G=1/9. Both indicate 
that after some initial adjustment, the numerical solutions 
tend to decay slightly more slowly, whereas the kinetic 
energy and l2 integrals decay more rapidly for the larger 
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FIQURE 9.-Fractional deviation of versus time for G= 1/9. 

stability factor. Again, round-off errors become significant 
infigure 10 for v t l r t 2 0 . 1 5 .  Thus, after the large initial 
errors, all three schemes give reasonably accurate results 
with the selection of a “best,” that is, most accurate 
numerical scheme, now noticeably less clear than for the 
larger stability factor. 

6. CONCLUSIONS 
The two-dimensional viscous spin-down of a fluid in 

initial solid body rotation has been studied numerically 
using both a first-order (Bryan) and second-order (Pear- 
son) expression for the retarding torque generated at  the 
fluid boundary. A third finite-diff erence expression has 
been developed that conserves total vorticity. While all 
schemes tested give reasonably accurate results, the 
conservative scheme provides the best vorticity prediction 
resulting in the smallest fractional deviation when the 
time step is chosen close to the maximum value allowed 
by the von Neumann stability criteria. However, the 
choice of the best prediction scheme for smaller time steps 
is not a t  all clear. All calculations are noticeably improved 
by an increase ill spatial resolution while only the vorticity 
values are slightly improved by a decrease in the time 
step. Over the time range studied, accounting for over- 
99.9-percent decay in the kinetic energy, the maximum 
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FIGURE 10.-Fractional deviation of kinetic energy (KE) versus 
time for G= 1/9. 

fraction deviation in { and 7 shown by all three schemes 
is less than 0.8 percent and 1.4 percent, respectively, after 
the large initial error due to inadequate boundary-layer 
resolution has vanished. 
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